
Perfect Play
using Nine Men's Morris as an example

D

D

D

D

D

D

D

D

D

Diploma Thesis
Department of Computer Science

ETH Zürich

Thomas Lincke

Supervising Professor: Prof. Dr. J. Nievergelt

Assistant: Ralph Gasser

1

Contents
Introduction.. 2
Perfect Play .. 4

1 Starting point .. 5
1.1 SearchBench: An endgame solver ... 5
1.2 Opening prover .. 6

2 Performance measurements .. 8
3 Buffering... 9

3.1 Locality .. 9
3.2 Memory management .. 9
3.3 Result ... 10

4 Perfect values.. 10
4.1 Value ranges .. 10
4.2 Result ... 12

5 More endgame databases .. 13
6 Move ordering .. 14
7 Minor improvements .. 15

7.1 Code optimization.. 15
7.2 Hashtable ... 15
7.3 Result ... 15

8 Results... 16
Traps & Swindles .. 18

9 Overview... 19
9.1 Definition traps and swindles .. 19
9.2 Implications of a proven draw in Nine Men's Morris........... 19

10 General model... 20
10.1 The perfect player .. 20
10.2 The heuristic player ... 20
10.3 Implications ... 21

11 Implementations of the model .. 21
11.1 Random player ... 21
11.2 Distance dependent move selection..................................... 22

12 Experimental tests... 23
12.1 The perfect players .. 23
12.2 The heuristic player ... 23
12.3 Selection of test positions .. 23
12.4 Results.. 24

Conclusions.. 25
Appendices .. 26

A Rules of Nine Men's Morris... 27
B Nine Men's Morris user interface... 28

B.1 The NMM menu.. 28
B.2 The Problem Display .. 29
B.3 Examples ... 31

Bibliography .. 34

2

Introduction

Exhaustive search of large spaces is a prominent research topic in computer science and
artificial intelligence.
Board games with their large state spaces provide a suitable means to compare the
performance of search algorithms. An important milestone in the developement of search
techniques is reached when a new game can be solved.
Using SearchBench [2], a tool for exhaustive search in game trees, Ralph Gasser has
recently proved that the game of Nine Men's Morris is drawn. He stored all position values
of the mid- and endgame phase in databases and used an additional opening search
program (the opening prover) to show that the initial position is a draw.

The task of this thesis is to improve SearchBench and the opening search program in three
ways.

 - None of the two programs allowed the user to play a whole game of Nine Men's
Morris. The first goal of the thesis was to merge the programs together and to provide a
comfortable user interface for game playing and database analysis. The user interface
is described in appendix B.

- The opening prover could not find perfect moves, because it did not distinguish
between drawn and won moves for efficiency. In the context of this thesis, a perfect
move is a move which attains the value of the position.
The second goal of the thesis was to rewrite the opening search program to play perfect
without requiring excessive search time. The section 'Perfect Play' describes the
technical aspects of improving the opening search algorithm.

- A perfect play Nine Men's Morris program can never lose. But it can try to win, even
when the actual position is a proven draw, because it can assume that its opponent is
fallible and will blunder now and then.
The third goal of this thesis was to implement an algorithm for traps and swindles. In
section 'Traps and Swindles', a model for the difficulty of a position is introduced and a
number of experimental results are presented.

3

Eidgenössische
Technische Hochschule

Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo

Swiss Federal Institute of Technology Zurich

Diplomarbeit für Thomas Lincke, Abt. IIIC

3. Mai 1994 bis 2. September 1994

Perfektes Spielen am Beispiel von Mühle

Einleitung

perfektes Spielen: Traditionelle Spielprogramme für Brettspiele verwenden bei der Suche
nach guten Zügen heuristische Suchalgorithmen. Bei ausreichender Rechenzeit ist es aber
auch möglich, den spieltheoretischen Wert zu berechnen, d.h. zu entscheiden, ob ein Spiel
gewonnen, verloren oder unentschieden ist für den Anziehenden. Mit Hilfe dieses
spieltheoretischen Wertes ist es möglich, ein Spiel perfekt zu spielen.

Datenbanken für Mühle: Ralph Gasser hat für Mühle bewiesen, dass das Spiel
unentschieden ist. Dazu hat er Datenbanken für alle Stellungen nach dem Setzen sowie eine
Datenbank für Eröffnungen berechnet. Mit einem einfachen Suchprogramm lässt sich so
für jede Stellung ein Zug finden, der mindestens das Unentschieden erreicht.

Ausbaumöglichkeiten: Im jetzigen Zustand kann das Programm während der Eröffnung
nicht perfekt spielen, da sonst die Antwortzeit und der Speicherbedarf zu gross wären.
Aber auch ein perfekt spielendes Programm lässt sich noch gefährlicher machen, wenn es
versucht, aus einer Reihe von perfekten Zügen denjenigen zu wählen, der für den Gegner
am ‘schwierigsten’ zu beantworten ist. Man kann zum Beispiel für alle perfekten Züge
untersuchen, bei welchem von diesen man eine Stellung erhält, welche dem Gegner einen
scheinbar guten Zug lässt, der jedoch zum Verlust führt.

Aufgabenstellung

Der erste Teil der Arbeit soll der Programmierung der Benutzeroberfläche gewidmet
werden. Dazu gehört das Einarbeiten ins Smart Game Board bzw. SearchBench sowie die
anschliessende Entwicklung der grafischen Benutzerschnittstelle.
Im zweiten Teil soll zuerst ein Programm entwickelt werden, das in jeder Stellung in
sinnvoller Antwortzeit einen perfekten Zug findet. Dabei sollen die vorhandenen
Endspieldatenbanken verwendet und eine neue Datenbank für die Eröffnung berechnet
werden. Danach sollen die Möglichkeiten für eine Suche nach ‘schwierigen’ Varianten
untersucht werden (traps & swindles). Eventuell müssen zur Verringerung der
Anwortzeiten Datenkompressionsverfahren untersucht werden.

Diplomand: Thomas Lincke

Betreuer: Ralph Gasser

Leitung: Prof. J. Nievergelt

4

Perfect Play

This section describes how the opening search algorithm was improved to return better
values and to be faster.
In the first chapter, SearchBench and the opening prover are presented as the starting points
of this thesis.
The following chapters describe the steps performed to improve the opening search
algorithm. Each chapter concludes with a table showing the performance of the program
after the new features were implemented. Chapter 8 summarizes the results.

5

4-4

3-3

4-3

5-3

5-4

5-5

6-3

6-4 7-3

6-5 7-4

8-4

9-4

8-3

9-37-5

8-5

9-5

6-6

7-6

8-6

9-6

7-7

8-7

9-78-8

9-8

9-9

Figure 1.1

1 Starting point
As explained in the introduction, two programs already existed when work started, one for
the opening and one for the mid- and endgame phase. As a first step, these two programs
were merged together so that a complete game could be played with one program.

1.1 SearchBench: An endgame solver

SearchBench [2] is a powerful tool for
the computation and management of
endgame databases. It provides all
necessary routines for computation,
access, compression and decompression
of database files. To implement a game,
only a number of game specific
routines, e.g. move generation and
board display, must be written. Games
implemented on the SearchBench
include Chess, the 15 puzzle and Nine
Men's Morris.

The state space of all mid- and endgame
positions of Nine Men's Morris
comprises about 1010 positions.
SearchBench stores both the game-
theoretic value and a distance to win
and a distance to loss respectively for
every position. In the case of Nine
Men's Morris this requires one byte per
position. The total size of the databases
is about 10GByte, which can be reduced
to about 1.7GByte using the internal
compression routines.

To make the Nine Men's Morris state
space easier to handle, it was split into
28 databases. (Figure 1.1)

For Nine Men's Morris, SearchBench
already provided a user interface to
allow board editing and game playing in
the mid- and endgame. The program
could carry out a single perfect move or
a sequence of perfect moves.

6

1.2 Opening prover

The opening prover was a special purpose program to solve the opening part of the game
(Figure 1.2). This chapter describes the techniques and trade-offs used for this program as
far as they are necessary for the understanding of the rest of the thesis.

intermediate database (8th ply)

hashtable (16th ply)

9-9 9-8 8-8 endgame
databases

alphabeta search
prove only draw
use lower bounds

alphabeta search
use lower bounds

alphabeta search
use lower bounds

opening phase
(18 plies)

mid- and
endgame
phase

Figure 1.2: organisation of the opening search program. Alpha-beta search is used for value
propagation. Where the search tree reaches the 18th ply (endgame phase), values are
loaded from the databases. At the 16th ply, values are hashed to be reused in case of move
transpositions. At the eighth ply, values are stored into an intermediate database.

store values in an intermediate database: The search time for positions in the first few
plies is much too high for real-time evaluation. An intermediate database was introduced to
store all necessary values of positions at the eighth ply.
In this database one bit of information was stored per position, it was only differentiated
between loss and at least drawn. Again, additional speed is traded off against lower quality
of position values, because a position can not be proved to be a win during the first eight
plies of the game. Computation of the database could be done relatively quickly, as the
alpha-beta search algorithm generates a cutoff as soon as a draw is found. Because the state
space of Nine Men's Morris is small enough after eight plies (about 3.5 *106), this database
can be loaded into main memory for faster access.

7

to Move

Figure 1.3: A non-reachable position.
Black has captured two stones, but has
no mills on the board

hash table: During the opening phase, many move transpositions can occur in Nine Men's
Morris. To avoid repeated access to the same endgame database value, a hash table was
introduced to store values at the 16th ply (Figure 1.2).

special purpose databases: The most straightforward way of accessing endgame values is
to call the proper SearchBench function and wait for the value. But this makes the search
algorithm slow since SearchBench may have to decompress parts of the database to read a
single value. Additionally, the databases contain more information than necessary.

SearchBench does not only
compute the game-theoretic values
of endgame positions, but also
stores the number of moves to win
or loss, assuming both Black and
White play optimally. But to
compute the value of the game, it is
sufficient to know the game-
theoretic values of endgame
positions. Also, not every position
in the endgame databases is
reachable from opening positions,
e.g. an endgame position with nine
black and seven white stones must
contain exactly two black mills to
be reachable (Figure 1.3).
Therefore, smaller special purpose
databases are used where only the
game-theoretic values are stored
and where non-reachable positions
are excluded. Storing five values
per byte results in databases which
are smaller and faster to access than
the original databases of
SearchBench.

use small number of databases: Theoretically, positions in any endgame database can be
reached from the opening phase. Thus for every SearchBench database a special purpose
database must be computed for the opening prover.
But, to prove that Nine Men's Morris is a draw, it turned out that the 9-9, 9-8 and 8-8
databases were sufficient, because in 'reasonable' games none or only a few stones are
captured during the opening. In case a database is required which is not available, a lower
bound for the value of the position is propagated (see 'worst case values' below). This
technique makes the opening search fast, because less disk accesses are needed, but
reduces the quality of the values returned by the alpha-beta search. For example, it is no
longer possible to play perfectly from all opening positions.

worst case values: The root node of a search tree is either a Black or a White node. When
the search algorithm expands a node it must always check whether the new position is still
within the domain of available databases. If the value of the new position is not available, a
worst case value for this position is generated. This worst case value depends on the player
at the root node and on the player who expanded the new position. If the root player and
the expanding player are the same, then the worst case value is a loss, otherwise it is a win.
This is just an application of the rule where, for example, if it's Black's move at the root
node, any losing move from any Black node in the tree is bad for Black.

8

to Move

Figure 2.1: the test position

Total search time [s] 2468

Disk access time [s] 2012
Relative to total [%] 81

Search tree size 2017853

Database misses 379776
Database hits 1069072
File accesses 1069072

Hashtable accesses 340775
Hashtable hits 249069

2 Performance measurements
In the following chapters, the opening prover will be improved step by step. To give an
idea about the effectiveness of the new techniques, every chapter concludes with table
showing some profiling information. This chapter explains the recorded data, how they
were computed and their values for the opening prover.

hardware: The measurements were
performed on a Macintosh Quadra
840AV using a 68040 processor
running at 33 MHz. The system has
24MByte RAM and an internal
harddisk of 500MByte.

the test position: Positions at the
eighth ply are the most difficult to
compute, because search must go
deeper to reach the databases. The
test position was, therefore, chosen
at the eighth ply (Figure 2.1).

Note that the values are valid only
for this position. The intention is
not to show the performance of the
algorithm in general, but to
demonstrate the strengths and
weaknesses of the techniques used.

the recorded data:
- Total search time: time required to compute the move
- Disk access time: time spent waiting for a disk access to complete
- Search tree size: number of nodes in the search tree that had to be expanded to

compute the value
- Database misses: number of accesses to databases which are not available
- Database hits: number of read accesses

to the endgame values
- File accesses: number of load accesses

to the database files
- Hashtable accesses: number of accesses to the

hashtable
- Hashtable hits: number of values found

in the hashtable

opening prover performance: The table on the
right shows the profiling data for the old opening
prover. For the test position, the total search time
was about 20 minutes, of which 81% was spent
during disk accesses. The number of database hits
and file accesses is equal because values are read
one by one from the database files.

9

key

pointer

key

pointer

key

pointer

header block

header block

header block

LRU

Hashtable Blocks

Figure 3.1: data structure

3 Buffering
During an opening search from a position at the eighth ply, the number of positions
accessed in the endgame databases is in the order of magnitude of 106 to 107. Profiling of
the search routine showed that about 80% of the time is spent accessing the disk to load
position values into memory. This in spite of the fact that a hashtable had been introduced
at the 16th ply (Figure 1.2) to provide values in case of move transpositions.

3.1 Locality

Even when the repeated access to the value of the same position is avoided, the number of
disk accesses can be reduced significantly. Analysis of the access pattern showed, that the
loaded values tended to be close together in the database files. This makes it very effective
to load whole blocks of values. The locality in the access pattern is a result of the way
positions are numbered in the endgame databases.
In databases where the number of white stones is higher or equal to the number of black
stones, all positions with the same configuration of white stones are stored in a continuous
block. The size of these blocks depends on the number of possible black configurations and
is different for every database.

Why is the alpha-beta search algorithm likely to access several values in the same block?
This is because black has the last move in the opening. At the 17th ply, White has made his
last move in the opening and the white configuration is fixed. All positions generated for
the last black move belong to the same white configuration and are stored in the same
block. Consequently, a major increase in performance can be achieved by loading whole
blocks of values at once and by keeping as many of them as possible in main memory.

3.2 Memory management

If the algorithm has to buffer loaded blocks, it must allocate and deallocate memory quite
frequently. Because the system calls for memory allocation and deallocation tend to be
slow (on a Macintosh), all memory used for buffering is allocated at initialisation and then
managed by the program itself. This is a short description of the memory management
algorithms used.

data structure: (see Figure 3.1)
The search algorithm must
store and access blocks of
different lengths as fast as
possible and wants to keep a
block in memory as long as
possible. To make access fast a
hashtable is used, containing a
key and a pointer to the
corresponding block.
A linear list of free blocks
(freelist) is maintained for
memory allocation, and a
doubly linked list is provided to
keep track of the used blocks.
Every block is preceded by a
header to store the pointers for
the lists.

10

hashing: A hashtable with collision detection is used to search for loaded blocks. The time
required for the access through the hashtable is negligible compared to the overall search
time, so a simple linear probing algorithm is used.

first fit: To allocate memory, the freelist is searched linearly and the first block which is big
enough is used. If no block is available in the free list, the least recently used block is
deleted from the used list and appended to the free list, merging it with adjacent free blocks
if possible.

LRU: The doubly linked list was implemented to keep track of which block is the least
recently used at any time. On every access to a value, the corresponding block is moved to
the end of the used list. Hence, the blocks are ordered according to the time of their last
access, and the first entry in the list points to the least recently used block.

3.3 Result

The following table shows the profiling data of the buffering algorithm as compared to the
old opening prover algorithm.
The number of file accesses was reduced by a factor of about 200, which resulted in a
speedup of 4.41.

old buffering
Total search time [s] 2468 559
Speedup 1.0 4.41

Disk access time [s] 2012 130
Relative to total [%] 81 23

Search tree size 2017853 2017853

Database misses 379776 379776
Database hits 1069072 1069072
File accesses 1069072 5786

Hashtable accesses 340775 340775
Hashtable hits 249069 249069

4 Perfect values
To get perfect values for all positions in the opening, it would be necessary to make all
endgame databases available. But this would increase search time, because values must be
loaded instead of using just simply a lower bound, and is not reasonable because only a few
databases are responsible for most accesses. Thus, another way of improving the quality of
the returned values is needed.

4.1 Value ranges

To reduce the effect of not knowing the exact value, the search algorithm was rewritten to
produce both a lower and an upper bound to the exact value, thus providing a means of
judging the quality of a value.

11

Instead of computing the worst case for not available values, we can generate a lower and
an upper bound to the exact value. Besides the usual perfect values of win, loss and draw
we introduce three new value ranges, namely 'Unknown' ('loss to win'), 'maxDraw' ('loss to
draw') and 'minDraw' ('draw to win'). Now the value of any position outside the domain of
available databases is set to 'Unknown', and search continues.
range propagation: Figure 3.2 shows a simplified algorithm for alpha-beta search. The
new algorithm differs only in the way values are propagated. Figures 3.3 and 3.4 show the
two propagation functions, implemented as an array PropTable in Figure 3.2.

AlphaBeta(Position, Alpha,Beta)
 SuccessorList := GetSuccessors(Position)

FOR I := all successors DO BEGIN
NewValue:=AlphaBeta(SuccessorList[I], Inverse[Beta], Inverse[Alpha])
Alpha:=PropTable[NewValue, Alpha]
IF Alpha>=Beta THEN RETURN Alpha

END
RETURN Alpha

END

Figure 3.2

Alpha
Win Loss Draw

Win Win Win Win
NewValue Loss Win Loss Draw

Draw Win Draw Draw

Figure 3.3: standard propagation function

Alpha
Win Loss Draw MinDraw MaxDraw Unknown

Win Win Win Win Win Win Win
Loss Win Loss Draw MinDraw MaxDraw Unknown

NewValue Draw Win Draw Draw MinDraw Draw MinDraw
MinDraw Win MinDraw MinDraw MinDraw MinDraw MinDraw
MaxDraw Win MaxDraw Draw MinDraw MaxDraw Unknown
Unknown Win Unknown MinDraw MinDraw Unknown Unknown

Figure 3.4

The new propagation function requires special handling in the root node. One problem
arises when one successor is evaluated as 'Unknown' and an other as 'Drawn'. Which is
better? Or, the first successor is evaluated as drawn, then search continues with
Alpha=draw and Beta=win. If the next value is a 'MinDraw', this may be the result of an
'Unknown' where the lower part of the range has been clipped.
In the former case, the algorithm chooses a conservative strategy, and plays the drawn
move. In the latter case, the same move is searched a second time with a full search range.

12

W

LL L worst case

L
cutoff

Figure 3.5: worst case values

U

U value range

search must go on

?

LL

Figure 3.6: value ranges

Discussion worst case values versus value ranges:
advantages of worst case values:

- many worst case values are wins,
generating immediate cutoffs, thus
speeding up search. Figure 3.5 shows an
example where a worst case loss generates
a cutoff

disadvantages of worst case values:
- the value resulting from search is only a

lower bound for the exact value
- no information is available to tell whether

the value is exact or only a lower bound
advantages of perfect ranges:

- the best value is found, given a certain
domain of available databases

- if an exact value is returned, then it is a
proven value

disadvantages of ranges:
- when propagating a value of 'Unknown',

the alpha-beta search gains no new
information, thus no cutoffs are generated
(Figure 3.6)

- some special handling is necessary at the
root node.

4.2 Result

The effect of using value ranges instead of worst case values is, that the size of the search tree is
increased 36 times, resulting in a disastrous slow down. When value ranges were implemented
the first time, they were immediately judged as 'nice but not practical' and discarded. Only after
further investigations means were found to avoid the large search tree.

old buffering value ranges
Total search time [s] 2468 559 16568
Speedup 1.0 4.41 0.14

Disk access time [s] 2012 130 309
Relative to total [%] 81 23 1.9

Search tree size 2017853 2017853 73006119
Relative to 'old' [%] 100 100 3618

Database misses 379776 379776 17216242
Database hits 1069072 1069072 49876901
File accesses 1069072 5786 12775

Hashtable accesses 340775 340775 11696076
Hashtable hits 249069 249069 10507311

13

5 More endgame databases
To prove that Nine Men's Morris is a draw, only three endgame databases were required.
When the alpha-beta search algorithm tried to access a database not available, a worst case
value was returned and used for further value propagation. This made the search algorithm
very fast, because less database values had to be read from the disk and because the worst
case values tended to create lots of cutoffs in the search tree.

After the new algorithm for propagation of value ranges had been implemented the strategy
of using as few databases as possible had to be dropped. Instead of a worst case value, a
value range 'Unknown' is now returned for every access to a database not available,
blowing up the search tree.

Because it is important to create as few unknowns as possible, more databases need to be
provided for the search algorithm. In fact, the higher search speed resulting from more
databases now must be balanced against the disk access delays resulting from more
different database values loaded and the increased memory requirements of these
databases.

The table shows the results after including three more databases (9-7, 9-6, 8-7). Note how
the number of database misses and the search tree size was reduced.

old value ranges databases
Total search time [s] 2468 16568 1148
Speedup 1.0 0.14 2.15

Disk access time [s] 2012 309 186
Relative to total [%] 81 1.9 16

Search tree size 2017853 73006119 4218225
Relative to 'old' [%] 100 3618 209

Database misses 379776 17216242 186808
Database hits 1069072 49876901 2749546
File accesses 1069072 12775 8115

Hashtable accesses 340775 11696076 529696
Hashtable hits 249069 10507311 385202

14

6 Move ordering
The move ordering strategy of the opening prover was optimized to compute lower bounds.
If it was White's move at the top level, then in White's nodes the defensive successors were
evaluated first, in Black's nodes the offensive, i.e. the capturing moves, were evaluated
first. This makes the search algorithm fast, because every time a Black capturing move
leaves the domain of available databases, a win for Black is returned (the worst case for the
White player) which results in an immediate cutoff.

When using perfect value ranges in the search algorithm, every capturing move which
leaves the domain of available databases generates an 'Unknown'. This does not result in
cutoffs, but increases the size of the search tree enormously.
It proved to be best to avoid the evaluation of capturing moves as long as possible, thus in
the new move ordering, both players use a defensive evaluation strategy, independent of
the player at the top level.

The search time is now reduced to about five minutes. Note the small number of database
misses. In a position where stones already have been captured, there will still be many
misses.

old databases move ordering
Total search time [s] 2468 1148 328
Speedup 1.0 2.15 7.52

Disk access time [s] 2012 186 105
Relative to total [%] 81 16 32

Search tree size 2017853 4218225 1100258
Relative to 'old' [%] 100 209 55

Database misses 379776 186808 18
Database hits 1069072 2749546 560411
File accesses 1069072 8115 4968

Hashtable accesses 340775 529696 287248
Hashtable hits 249069 385202 235064

15

7 Minor improvements
7.1 Code optimization

Modern compilers provide options for code optimization. Alas, the compiler used for this
thesis neither offered any means for automatic code optimization, nor did it make any of
the simplest and most straightforward optimizations, as for example replace a 'DIV 2'
operation by a 'shift right'.
After profiling the search algorithm, some procedures were optimized manually for better
performance. This included the following steps:

- loop unrolling of loops with a constant number of steps
- storing values computed at high cost for later reuse
- storing values of simple functions in tables, thereby replacing a function call

by a table access
- instruction strength reduction, especially replacements of 'DIV 2n' by 'shift

right n'

7.2 Hashtable

The old opening prover used a hashtable to store computed values at the 16th ply to avoid
repeated access to the value of the same position (Figure 1.2).
A few measurements showed that better results can be achieved when hashing values on
every ply level from 11 to 17.

7.3 Result

old move ordering optimizations hashtable
Total search time [s] 2468 328 281 232
Speedup 1.0 7.52 8.78 10.64

Disk access time [s] 2012 105 105 105
Relative to total [%] 81 32 37 45

Search tree size 2017853 1100258 1100258 646737
Relative to 'old' [%] 100 55 55 32

Database misses 379776 18 18 18
Database hits 1069072 560411 560411 361041
File accesses 1069072 4968 4968 4968

Hashtable accesses 340775 287248 287248 285514
Hashtable hits 249069 235064 235064 98523

16

8 Results
Figure 8.1 shows the new organisation of the opening search program, see Figure 1.2 for
the organisation of the old search program. The most important changes are, that perfect
values can now be computed in the whole search tree and that more databases are available.

intermediate database (8th ply)

endgame
databases

alphabeta search
use exact ranges
use hashtable
(11th to 17th ply)

9-9 9-8 9-7 9-6 8-8 8-7

alphabeta search
use exact ranges

alphabeta search
use exact ranges

opening phase
(18 plies)

endgame
phase

Figure 8.1: the new organisation of the opening search program (see Figure 1.2)

After the implementation of value ranges and after including additional databases, the
intermediate database can be recomputed and filled up with more exact values ranges. The
two original databases, which contained lower bounds for Black and lower bounds for
White respectively, were merged together to use the old values where possible. Because the
computation of all values in the database would take too long, a mechanism was
implemented to allow incremental computation.

17

The required time for a search depends mostly on the ply number at which it is started.
Figure 8.2 shows a qualitative plot of search time against ply number. The hardest moves
are those from the eighth ply, because moves from the first to the seventh ply can use the
intermediate database, and an eighth ply search must go down to the endgame databases.

4 8 12 16 18 ply number

time

Figure 8.2: qualitative plot of search time versus ply number

The following table repeats the results of the measurements.

old buffering value ranges databases move ordering final
Total search time [s] 2468 559 16568 1148 328 232
Speedup 1.0 4.41 0.14 2.15 7.52 10.64

Disk access time [s] 2012 130 309 186 105 105
Relative to total [%] 81 23 1.9 16 32 45

Search tree size 2017853 2017853 73006119 4218225 1100258 646737
Relative to 'old' [%] 100 100 3618 209 55 32

Database misses 379776 379776 17216242 186808 18 18
Database hits 1069072 1069072 49876901 2749546 560411 361041
File accesses 1069072 5786 12775 8115 4968 4968

Hashtable accesses 340775 340775 11696076 529696 287248 285514
Hashtable hits 249069 249069 10507311 385202 235064 98523

18

Traps & Swindles

This section examines methods to improve perfect playing programs. A model to
measure the difficulty of a position is introduced in chapter 10, and
implementations of it are described and compared in chapters 11 and 12.

19

9 Overview
Much effort has gone into solving games. After a game is solved, it is possible to play the
game perfectly. This means that the computer player is always able to attain the game-
theoretic value of the actual position. In a stronger sense this can mean that the computer
player can move so that he can win with a minimum number of moves, or, in lost positions,
lose with a maximum number of moves. There is still some potential for improvement
assuming that the opponent is a human player or a heuristic program. Because of their
limited knowledge of the values of the positions, they may blunder now and then. How this
can be exploited by a perfect player depends on the value of the position he has to move
from.
If the perfect player already has achieved a won position, a blunder by his opponent will
result in a win within a lower number of moves. This can be decisive in games where limits
in the number of moves are given, as for example the 50 moves rule in chess.
If the perfect player is in a drawn position, a blunder of his opponent would increase the
game-theoretic value to a win. Note that there may not be any distance information
associated with drawn positions, because opponents agree on a draw only after repetition of
positions already taken up.
If the perfect player is in a lost position, there are two kinds of blunders his opponent may
make, he may increase the game theoretic value to a draw or even to a win for the perfect
player.

9.1 Definition traps and swindles

How can the perfect player increase the probability that his opponent blunders? A number
of general strategies have been proposed to exploit additional knowledge from databases,
or additional knowledge resulting from a deeper search horizon [3][5].
For example, two strategies are proposed for a player who can search deeper than his
opponent [5], said strategies are called 'traps' and 'swindles'.
A trap is a position where the opponent has a move that looks good at shallow depth, but is
revealed as bad at greater depth. Whether a position is a trap or not is strongly related to the
difficulty of a position (as seen from the viewpoint of the heuristic player). The perfect
player has to identify such positions and must try to steer the game in their direction.
A swindle is a move that looks good for the perfect player at shallow depths, but turns out
bad at greater depth (against the opponent's perfect play). By definition, a swindle is a
move of the perfect player which does not attain the game-theoretic value, i.e. it is not a
perfect move.

9.2 Implications of a proven draw in Nine Men's Morris

In Nine Men's Morris, the perfect player will never lose a game, unless he swindles. This
thesis concentrates on strategies for drawn positions, assuming that the perfect player will
not take any risks. A lost position for the perfect player will therefore not be encountered,
and in case he achieves a win, there is no need for using traps or swindles because no limit
on the number of moves exists for Nine Men's Morris.

20

10 General model
The definition of traps suggests that the difficulty of a position must be defined. This
chapter introduces a general mathematical model to measure the difficulty of a position.

10.1 The perfect player

Let PP be the perfect player and HP his opponent, the heuristic player. Assuming PP is to
move next and the value of the position is a draw, PP has u perfect moves (u>=1), and an
arbitrary number of losing moves. As PP will not take any risks, the losing moves can be
discarded immediately.
PP now needs some means to decide which of his moves produces the most difficult
position for HP. Assuming we know the probability mi HP will make a perfect move for
the position after PP's i-th move (1<=i<=u), then PP must choose the move k so that
mk<=mi for all i.

Rule for PP: choose move k so that mk=min mi (1<=i<=u)

10.2 The heuristic player

How can we compute the mi's? HP has a total of v moves, where at least one is drawn and
some may lose, but he does not know the exact value of them. Let's introduce a variable dij
= 1 if the j-th move of HP is perfect and dij=0 if not. Assuming we know the probability pij
that HP plays the j-th move after PP has played the i-th move, then mi becomes

v
mi := ∑ pij dij
 j:=1

Figure 10.1 shows a subgraph of the search tree and the propagation functions.

1 i u

i1 ij iv

PP

PP

HP

pij

	 v
mi := 	 ∑ pij dij	
	 j:=1

P := min mi
	 i

Figure 10.1
The overall evaluation function for PP becomes

21

 v
P := min (∑ pij dij)
 i j:=1

Applying this function to PP's nodes in the next deeper level of the search tree (Figure
10.1), we can write the evaluation function recursively as

P(0) := 1

 v
P(n) := min (∑ pij dij Pij (n-2)) ; n= 2, 4, 6, ...

 i j:=1

10.3 Implications

The values of the dij 's are known to PP, because they can be computed from the endgame
databases.
The values of the pij's are known only if the heuristic function of HP is known. In this
special case, PP must evaluate P(2), P(4), P(6), ... until he finds a P(n)=0, which means that
he found a move sequence where he knows HP will blunder at the n-th ply.

In general, the heuristic function of HP is not known, so PP in turn needs a heuristic
function to compute approximate values for the pij's.

11 Implementations of the model
11.1 Random player

For the first implementation we assume that HP is a random player. This implies that the
move probabilities are all equal, if HP has v moves then pij =1/v (Figure 11.1).

mi = number of perfect moves/total number of moves

The only information PP needs to compute mi are the game-theoretic values of the
positions of the successor nodes.

HP

D D LLDD L

0.51.0 0.33

Figure 11.1: numerical examples for mi in nodes with two and three successors

22

11.2 Distance dependent move selection

Two kinds of information are available from the endgame databases as computed by
SearchBench. In the 'Random' implementation, only the game-theoretic value was used to
generate traps for the opponent. But for positions with a game-theoretic value of win or
loss, also the maximum distance to win and the minimum distance to loss are stored, where
distance means the number of moves. Positions with a game-theoretic value of draw have
no distance information stored, because a drawn game will go on infinitly, or until a
repetition of positions occurs.
Can this additional information be exploited to find better moves? We assume that HP, to
find his next move, uses some kind of a search function with a limited horizon. The search
depth of the search function is unknown, but we assume to have a lower bound L and an
upper bound U for the search depth of the opponent. Then the probability that HP plays a
move which would be a loss in L or fewer moves is zero. The probabilities of moves with a
distance equal or larger than U are assumed to be equal to the probability to play a drawn
move (or a drawn move can be looked at as losing in an infinite number of moves).

Figure 11.2 shows an algorithm for computing mi, where D means distance to loss. For
drawn moves, pij is set equal 1, the last step scales the sum of the pij 's to 1.
Figure 11.3 gives some numeric examples, assuming L=2 and U=12.

FOR j:=1 TO v DO
IF dij=0 THEN

IF D>=U THEN
Sum:=Sum+1

ELSE IF D>L THEN
Sum:=Sum+(D-L)/(U-L)

ELSE BEGIN
Sum:=Sum+1
CountPerfect:=CountPerfect+1

END
mi:=CountPerfect/Sum

Figure 11.2

D L6

0.7

L12L4D

0.45

D L2

1.0

L8L4D

0.55

HP

D D

1.0

D L12

0.5

Figure 11.3: numerical examples for L=2 and U=12

23

12 Experimental tests
To compare the two implementations of the model, a set of test positions with a value of
draw was randomly selected from the databases. A sequence of four moves was played
from these positions, PP making the first move.
The performance of the implementation is then measured as the number of wins achieved
against a heuristic player.

12.1 The perfect players

The two implementations of the general model described in the previous chapter are
compared with each other and with a perfect player using no traps, i.e. choosing the first
perfect move found in the databases.

12.2 The heuristic player

The opponent of the perfect players is a heuristic Nine Men's Morris program called
Bushy[1]. It is implemented on the Smart Game Board [4], a general graphical user
interface for games.

Bushy is the best heuristic Nine Men's Morris program I am aware of. In 1990 it challenged
the British champion in a six game match and won 5-1 (4 wins, 2 draws). In 1991 it was
the winner of the Nine Men's Morris tournament at the Computer Olympiad.

Bushy is also incorporated into a Nine Men's Morris playing robot, which is on display at
the Technorama in Winterthur, Switzerland. Bushy is reported to have a good score against
the museum visitors.

12.3 Selection of test positions

From each of the databases 3-3, 4-3, 4-4, 5-4 and 5-3, twenty random positions with a
game-theoretic value of draw were selected. Note that the average number of losing
successor nodes is not the same for different databases Figure (12.1). For some databases,
the probability of hitting a position with losing successors is extremely low.

won lost drawn
3-3 47167 9659 96
4-3 177678 3095 1340023
4-4 159 29 3225409
5-3 586961 9677 4564142
5-4 9940 1518 20609534

Figure 12.1

24

12.4 Results

SearchBench - Bushy no Traps Random (2) Distance (2)
3 - 3 55 55 75
4 - 3 0 0 0
3 - 4 30 80 70
4 - 4 0 0 0
5 - 3 0 0 0
3 - 5 0 20 30
5 - 4 0 0 0
4 - 5 0 0 0

Figure 12.2

Figure 12.2 shows the result of the tests. The column on the left gives the number of stones
of the perfect player and Bushy respectively at the beginning of the test. The other three
colums contain the percentage of games the perfect players won against the heuristic
player.

The perfect players achieved wins only when they had three stones, i.e. in the endgame
phase. Within the other databases, the probability of finding losing successors seems to be
too small to make the heuristic player blunder.

Nevertheless, it seems to be better to search for traps than to play just any perfect move,
since the Random and Distance players always performed at least as well as the perfect
player using no traps. The difference between Random and Distance is not so clear,
because none of them seems to be absolutely superior to the other.

The results are not very useful, since they depend more on the chosen databases than on the
chosen implementation of the perfect player.

25

Conclusions

In addition to what SearchBench provides, the new Nine Men's Morris user
interface allows the user to play games both in the opening and the endgame
phase, to set up arbitrary positions in the opening and the endgame, and to analyse
positions by displaying the values of the moves on the board.

The quality of the values returned from the opening search program has been
improved by introducing value ranges. For most positions reached with
'reasonable' moves the computed value will be the perfect value, otherwise a
lower and an upper bound are returned.
Speed and quality of the opening search program can be improved by making
additional databases available. I strongly recommend to add at least one level of
databases (9-5, 8-6, 7-7).

A model was introduced to measure the difficulty of positions. After making a
few assumptions about the heuristic player (random player, player using search
function with limited search depth), two implementations of the model and the
standard move selection were compared in play against a heuristic program. For
positions in some endgame databases the new move selection performed better
while it made no difference in others.
A better way to compare the performance of the implementations would be to
measure the correlation between the computed difficulties of positions and the
error probability of the heuristic program. For example, all positions of the
endgame could be classified by their difficulty, and then the positions of a certain
difficulty range, say 0.8 to 0.89, could be presented to a heuristic player. The
better the values for the computed difficulties of the positions are, the closer to
0.875 will the average error probability of the heuristic player be.
Because of the large size of the databases, this kind of measurements could not be
done within the given time limits.

26

Appendices

27

a

7

b

6

c

5

d

4

e

3

f

2

g

1

Figure A.1: The empty board
with the coordinate system
for game annotation

Figure A.2: Two black mills

A Rules of Nine Men's Morris

background: Nine Men's Morris (NMM) is a board
game for two persons. It belongs to the family of
'three in a row' games, where both players aim to
arrange three of their stones in a row on adjacent
fields. The board contains 24 fields, represented as
the crosspoints in Figure A.1. For details on game
history, strategies and rule variants see [6].

terminal positions: The game ends with either a
draw or a loss for the player to move. A game is
drawn by repetition of positions, a player loses when
he has fewer than three stones or no valid move.

closing a mill: A configuration of three stones is
called a mill (Figure A.2). The white stones do not
represent a mill, because they are not connected by
edges. The act of putting the third stone into the
row is called 'closing a mill'. The player who closes
a mill captures one stone of the opponent. If
possible, a stone which is not part of a mill must be
removed. If two mills are closed at once, only one
stone is captured.

opening: The game starts with an empty board, and
both players have nine stones. White begins and
then both players move alternatingly. During the
opening phase, a move consists of putting a stone
onto an empty field on the board. Since both
players start with nine stones, the opening phase
lasts exactly 18 plies.

midgame: All positions after the opening where both players have more than three stones
belong to the midgame phase. Both players move by sliding a stone of their color to an
adjacent, empty field.

endgame: Endgame starts as soon as one player has only three stones on the board. The
player who has still more than three stones moves as in the midgame phase, while players
with exactly three stones are allowed to 'jump' with one of their stones to any empty field
on the board.

28

B Nine Men's Morris user interface

This appendix describes the Nine Men's Morris user interface. The program is implemented
on top of SearchBench [2], a tool for endgame database computation and handling. Here
only the part of the user interface specific to Nine Men's Morris is described.

B.1 The NMM menu

Edit Mode / Play Mode: Here the user can choose between edit and play mode. Edit mode
is for position setup and allows the user to move the stones in arbitrary ways. In play mode,
only valid moves according to the rules in appendix A may be carried out.

No Search / Search All / Search First: These three commands tell the search algorithm
what to do if a value needed from the intermediate database is not yet evaluated.
Since the computation of all values in the intermediate database takes very long, a
mechanism for incremental evaluation was implemented.
With 'No Search' selected, the values of all positions not yet evaluated are set to
'Unknown'.
With 'Search All' selected, the algorithm starts evaluation of the needed values not found in
the database, adding the new values for future use.
With 'Search First' selected, only the first unknown value in the database is computed and
updated.
The evaluation of a single position at the eighth ply may take a few minutes, so the user
will prefer 'No Search' or 'Search First' to play the game.

No Traps / Random / Distance: These commands affect the way search is performed in
mid- and endgame positions.
With 'No Traps' selected, the move command returns the first move which attains the
game-theoretic value of the position.
With 'Random' selected, the search algorithm assumes that its opponent is a random player.
With 'Distance' selected, the search algorithm assumes that its opponent uses a search
function with limited search horizon. A more detailed description of the 'Random' and the
'Distance' algorithm can be found in chapter 11.

Full Search / Draw Only: There still are positions for which the opening search algorithm
takes too long to find a perfect move. With 'Draw Only' selected, the search algorithm only
tries to prove a draw. This results in a considerable speedup, but the program may miss a
possible win. For perfect play, 'Full Search' must be selected.

29

B.2 The Problem Display

The 'Problem display' window is responsible for the representation of the game board and
for user interaction. It provides buttons for program control and displays the state of the
game.

Clear Board

Show Values

Move to Move

Opening Position

Figure B.1: The 'Problem Display' window

30

the buttons: the 'Clear Board' button empties the board and sets White to move. This can
also be done by hand in edit mode. The 'Move' and the 'Show Values' buttons start a game
tree search with the actual position as an initial position. The 'Move' button searches for a
move either by starting the opening search or by starting a trap search in the endgame.
After the successful completion of the search the best move is automatically carried out on
the board. The 'Show Values' button also starts the proper search routine, but instead of
carriying out a move, the values of all moves are displayed on the board. This command is
a powerful means for game analysis and learning.
Chapter B.3 gives some example diagrams for the 'Show Values' command and explains
how to interpret the results.

the board: besides a graphical representation of the board, the pits of black and white
stones, the player to move and, if available, the game-theoretic value of the actual position
are displayed. The game-theoretic value is known only after a search has been performed
and is lost as soon as a move is made or the board is edited. The 'To Move' icon is toggled
when a move is made, it can be edited by the user in edit mode. The pits show how many
stones are still to be played (opening phase only) and how many stones have been captured.
The captured stones are aligned to the right while the stones which are still to be played are
aligned to the left.
(On the empty board, the stones in the pits are aligned both to the left and the right side.
But they were all captured in the last game, and they are all to be played in the next game,
so they just go round and round and round...).

how to move: the computer generated moves are carried out automatically. The user moves
by clicking on a stone and moving it to the new field. When a mill is closed, an opponent's
stone can be captured by clicking on it. Moves that are against the rules are ignored.

how to set up a position: to analyse specific positions, a setup function is provided. After
selecting 'Edit' command in the 'NMM' menu, the stones on the board and in the pits can be
moved to arbitrary positons by clicking on them and dragging them to the desired place. To
move a stone to the pits, the user must drag the stone either to the left or the right end of
the pit to distinguish between captured stones and stones which are still to play. To change
the color of the next player to move, just click on the 'To Move' icon.

31

B.3 Examples

The following diagrams demonstrate the user interface and how it can be used as a
powerful game analysis tool.

to Move

Opening Position

A position in the opening after the third move
of White. White has six and Black has seven
stones to play with Black to move.

to Move

Opening Position

Another opening position. Black has two mills
and has captured two stones.

to Move

Drawn Position

A midgame position where White is two
stones ahead. The game-theoretic value is a
draw.

to Move

Win in 21 Plies

An endgame position where White has a
forced win in 21 plies.

32

to Move

Opening PositionD

D

L

L

L

L

D

L

DD D

D

D

L

An opening position after the execution of the
command 'Show Values'. A move to a field
marked with 'D' is a proven draw for White,
an 'L' is a proven loss and a 'W' a proven win.

to Move

Opening Position

D

D D

L

D

D

D

L

D

D

D
W

D
W

Another opening position. For two moves the
exact value could not be found, because not all
endgame databases were accessible. In such a
case, a value range is displayed within which
the exact value must be. Both moves are 'at
least drawn'. Other possible value ranges are
'at most drawn' and 'unknown'.

to Move

Opening Position

D

L

L

L

L

L

L

L

L

L
W

An opening position where White has a move
which closes a mill. Because the values for
capturing moves may depend on which stone
is captured, these moves are marked with
value ranges. The following example explains
how to display the values of the captured
stones.

to Move

Opening Position

D

L

L

L

L

L

L

L

L

L
W

D

L

L

L

L

L

L

L

L

L
W

W

L L D

L

L L

The same position as in the previous example.
To display the values of the captured stones,
click the mouse button as if to carry out the
capturing move and keep the mouse button
pressed. If the mouse button is released, the
move is carried out, if the mouse pointer is
dragged away and then released, the position
remains unchanged.

33

to Move

Win in 37 Plies

W

D D

D

D

D D

D

D

D W

D

D

D D

W

A midgame position after the execution of
'Show Values'. The move values are displayed
in the direction the stones have to be slid.

to Move

No Database

LW
W
L

W
L

LW

LW
W
L

W
L

LW

LW
W
L

W
L

LW
W
L

W
L

W
L

LW

For mid- and endgame positions the user must
explicitly load the necessary databases by
executing the 'Set File' command in the 'View'
menu. Otherwise the values are 'Unknown'.

to Move

Win in 25 Plies

L
W

D D

An endgame position. Because the player to
move can 'jump' with any stone to any
position, the exact values can only be seen
after clicking on the desired stone.

to Move

Win in 25 Plies

D D D

D D

D D D

D

D D D

D D

D D

D D D

D D

D D D

D

D D D

D D

D D

D D D

D D

D D D

D

D D D

D D

D D

L
W

D D

L

L

L

W

The same position after clicking on the black
stone marked as 'unknown'. The values are
shown for every field it can be moved to. The
values for the capturing move are shown on
the white stones.

34

Bibliography
[1] R.Gasser, Heuristic Search and Retrograde Analysis: their application to

Nine Men's Morris, Diploma thesis, 1990

[2] R.Gasser, PhD, to appear

[3] P.J.Jansen, Using Knowledge about the Opponent in Game-Tree Search,
Ph.D. Thesis, Carnegie Mellon University, 1992

[4] A.Kierulf, Smart Game Board: a Workbench for Game-Playing Programs,
with Go and Othello as Case Studies, PhD. Thesis, ETH Zürich, 1990

[5] J.Nievergelt, Heuristisches Wissen und Suchen am Beispiel:
Computerspiele, Vorlesungsskript, SS1992

[6] H.Schürman, M.Nüscheler, So gewinnt man Mühle, Otto Meier Verlag
Ravensburg, 1980

