Perfect Play

using Nine Men's Morris as an example

|

1 T
D-D—

|

b0

D D

Diploma Thesis
Department of Computer Science
ETH Zirich

Thomas Lincke

Supervising Professor: Prof. Dr. J. Nievergelt

Assistant: Ralph Gasser

Contents

INEFOAUCTION..... ettt et e e e e e e e e e e e e e e e e s e e aananns 2o
PerfeCt Playccooiiiieeeeee e e e e e e e e e e eenennnnnnnnn e Bl
1 Starting POINTcooeeeeeee e oo
1.1 SearchBench: An endgame solverccccceeeeeeeeenn... 5.
1.2 OPENING PrOVET ..ceevveeieiiceee et e e e e ee e e e B.ou
2 Performance measuremMentsScccuuuviiiiiiiiiireiiieeeeeeeeeeeeaae e 8.
S BUfEIING ..o ...
3.1 LOCANLY oo Q...
3.2 Memory managementvvvvevuieeriineeeeiin e eennn 9.
BB RESUI e 10Q......
4 PerfeCt VAIUES ..o 10........
4.1 ValU€ raNQgESvvvveiiieii i i eeeee et 10......
4.2 RESUI ..ooviiiiiiiii ettt 12.....
5 More endgame databases...........cccceeeeeiiiiiiieeeeeeeeeeeeen 13.........
(1Y o)V /=T o] o [T [T O 14.......
7 MINOK IMPIOVEMENLScceeeiiiiiieeeeeeeiere s e e e e e e e e e e e e e 15.....
7.1 Code optimiZatioN...........ueeeeeeiieeeeeeeeeeeeeeeeeee 15....
7.2Hashtable ... 15......
T3 RESUI .o 15.....
B RESUILS ... 16........
Traps & SWINGAIES ..o e e e e e 18.........
O OVEIVIEW....ceii ittt ettt e e e e e e e e e e e e e e e e e e ee e 19.......
9.1 Definition traps and swindlescccoeevvviiiiiieeee e, 19.....
9.2 Implications of a proven draw in Nine Men's Morris....19...
10 General MOAEL........uuuuiiiiiiiiiiiieieee e 20.......
10.1 The perfect playerccooovviiiieeiiiccee e 20......
10.2 The heuristic playerooovvviiiiiiiiiiiieeeeeeeeeeeeeee 20......
10.3 IMPlICALIONS ..covvviiiiecee e 21.....
11 Implementations of the model ... 21......
11.1 RaNdOM Player.......ccuvuuuviiiiiiiieeeee e 21.....
11.2 Distance dependent move selection.......................... 22......
12 EXperimental teStS......cceiiiii i 23.......
12.1 The perfect playerscccccceeviiieiieeiieieieeeeen 23......
12.2 The heuristic playerooovvviiiiiiiiiiiee e 23.....
12.3 Selection of test poSitionNScoovvvvviviiiiiiiiiieee e, 23.....
12,4 RESUILS ...ttt 24.......
(O] o[1157 o] o - J U TP TT R TTRT 25.........
Y o] o 1= T [To = SR PRUURRPRRN 26..........
A Rules of NiN€ MEN'S MOITISuuuuuiiiiiiiiiiiiiiiiiee e 27.......
B Nine Men's Morris USer iINterfacCe...........uuveeiiiiiiiieeeeeeeieeeeceiiiveee 28.......
B.1 The NMM MENU.....ccooiiiiiiiiiiiiieieeeeeee e 28.....
B.2 The Problem Displayccccceeeieiiiiiiieeiiiieeen 29.....
B.3 EXQMPIESoovveiiiiiiiee e 31......
Bibliographycoooiieee e —————- M.

Introductior

Exhaustive search of large spaces is a prominent research topic in computer science
artificial intelligence.

Board games with their large state spaces provide a suitable means to compare
performance of search algorithms. An important milestone in the developement of sear
techniques is reached when a new game can be solved.

Using SearchBench [2], a tool for exhaustive search in game trees, Ralph Gasser
recently proved that the game of Nine Men's Morris is drawn. He stored all position valu
of the mid- and endgame phase in databases and used an additional opening se
program (the opening prover) to show that the initial position is a draw.

The task of this thesis is to improve SearchBench and the opening search program in tr
ways.

- None of the two programs allowed the user to play a whole game of Nine Men
Morris. The first goal of the thesis was to merge the programs together and to provide
comfortable user interface for game playing and database analysis. The user interf
is described in appendix B.

- The opening prover could not find perfect moves, because it did not distinguis
between drawn and won moves for efficiency. In the context of this thesis, a perfe
move is a move which attains the value of the position.

The second goal of the thesis was to rewrite the opening search program to play peri
without requiring excessive search time. The section 'Perfect Play' describes t
technical aspects of improving the opening search algorithm.

- A perfect play Nine Men's Morris program can never lose. But it can try to win, evel
when the actual position is a proven draw, because it can assume that its opponer
fallible and will blunder now and then.

The third goal of this thesis was to implement an algorithm for traps and swindles. |
section 'Traps and Swindles', a model for the difficulty of a position is introduced and
number of experimental results are presented.

Eidgendssische Ecole polytechnique fédérale de Zurich
Technische Hochschule Politecnico federale di Zurigo
Zirich Swiss Federal Institute of Technology Zurich

Diplomarbeit fir Thomas Lincke, Abt. IIIC

3. Mai 1994 bis 2. September 1994

Perfektes Spielen am Beispiel von Muhle

Einleitung

perfektes SpieleMraditionelle Spielprogramme fiir Brettspiele verwenden bei der Suche
nach guten Zugen heuristische Suchalgorithmen. Bei ausreichender Rechenzeit ist es al
auch mdglich, den spieltheoretischen Wert zu berechnen, d.h. zu entscheiden, ob ein Sg
gewonnen, verloren oder unentschieden ist fir den Anziehenden. Mit Hilfe dieses
spieltheoretischen Wertes ist es maglich, ein Spiel perfekt zu spielen.

Datenbanken fur MihleRalph Gasser hat fur Mihle bewiesen, dass das Spiel
unentschieden ist. Dazu hat er Datenbanken fir alle Stellungen nach dem Setzen sowie
Datenbank fur Eréffnungen berechnet. Mit einem einfachen Suchprogramm lasst sich so
fur jede Stellung ein Zug finden, der mindestens das Unentschieden erreicht.

Ausbaumdoglichkeitenm jetzigen Zustand kann das Programm wahrend der Er6ffnung
nicht perfekt spielen, da sonst die Antwortzeit und der Speicherbedarf zu gross waren.
Aber auch ein perfekt spielendes Programm lasst sich noch gefahrlicher machen, wenn «
versucht, aus einer Reihe von perfekten Zigen denjenigen zu wahlen, der fir den Gegne
am ‘schwierigsten’ zu beantworten ist. Man kann zum Beispiel fur alle perfekten Zige
untersuchen, bei welchem von diesen man eine Stellung erhéalt, welche dem Gegner eine
scheinbar guten Zug lasst, der jedoch zum Verlust fuhrt.

Aufgabenstellung

Der erste Teil der Arbeit soll der Programmierung der Benutzeroberflache gewidmet
werden. Dazu gehort das Einarbeiten ins Smart Game Board bzw. SearchBench sowie ¢
anschliessende Entwicklung der grafischen Benutzerschnittstelle.

Im zweiten Teil soll zuerst ein Programm entwickelt werden, das in jeder Stellung in
sinnvoller Antwortzeit einen perfekten Zug findet. Dabei sollen die vorhandenen
Endspieldatenbanken verwendet und eine neue Datenbank fir die Er6ffnung berechnet
werden. Danach sollen die Moglichkeiten fur eine Suche nach ‘schwierigen’ Varianten
untersucht werden (traps & swindles). Eventuell missen zur Verringerung der
Anwortzeiten Datenkompressionsverfahren untersucht werden.

Diplomand: Thomas Lincke
Betreuer: Ralph Gasser

Leitung: Prof. J. Nievergelt

Perfect Pla

This section describes how the opening search algorithm was improved to return bet
values and to be faster.

In the first chapter, SearchBench and the opening prover are presented as the starting p«
of this thesis.

The following chapters describe the steps performed to improve the opening sear
algorithm. Each chapter concludes with a table showing the performance of the progr:
after the new features were implemented. Chapter 8 summarizes the results.

1 Starting point

As explained in the introduction, two programs already existed when work started, one f
the opening and one for the mid- and endgame phase. As a first step, these two progr.
were merged together so that a complete game could be played with one program.

1.1 SearchBench: An endgame solver

SearchBench [2] is a powerful tool for
the computation and management of
endgame databases. It provides all
necessary routines for computation,
access, compression and decompression
of database files. To implement a game,
only a number of game specific
routines, e.g. move generation and
board display, must be written. Games
implemented on the SearchBench
include Chess, the 15 puzzle and Nine
Men's Morris.

The state space of all mid- and endgame
positions of Nine Men's Morris
comprises about 2O positions.
SearchBench stores both the game
theoretic value and a distance to win
and a distance to loss respectively for
every position. In the case of Nine
Men's Morris this requires one byte per
position. The total size of the databases
Is about 10GByte, which can be reduced
to about 1.7GByte using the internal
compression routines.

To make the Nine Men's Morris state
space easier to handle, it was split into
28 databases. (Figure 1.1)

For Nine Men's Morris, SearchBench
already provided a user interface to
allow board editing and game playing in
the mid- and endgame. The program
could carry out a single perfect move or
a sequence of perfect moves.

3-3
Figure 1.1

1.2 Opening prover

The opening prover was a special purpose program to solve the opening part of the ge
(Figure 1.2). This chapter describes the techniques and trade-offs used for this progran
far as they are necessary for the understanding of the rest of the thesis.

alphabeta search
prove only draw
use lower bounds

opening phase
(18 plies)

alphabeta search
use lower bounds

\ hashtable (16th ply)_

alphabeta search
use lower bounds

Figure 1.2: organisation of the opening search program. Alpha-beta search is used for ve
propagation. Where the search tree reaches the 18th ply (endgame phase), values
loaded from the databases. At the 16th ply, values are hashed to be reused in case of n
transpositions. At the eighth ply, values are stored into an intermediate database.

store values in an intermediate databa3éte search time for positions in the first few
plies is much too high for real-time evaluation. An intermediate database was introduced
store all necessary values of positions at the eighth ply.

In this database one bit of information was stored per position, it was only differentiate
between loss and at least drawn. Again, additional speed is traded off against lower qua
of position values, because a position can not be proved to be a win during the first ei
plies of the game. Computation of the database could be done relatively quickly, as t
alpha-beta search algorithm generates a cutoff as soon as a draw is found. Because the
space of Nine Men's Morris is small enough after eight plies (about) thid database
can be loaded into main memory for faster access.

hash table:During the opening phase, many move transpositions can occur in Nine Mer
Morris. To avoid repeated access to the same endgame database value, a hash table
introduced to store values at the 16th ply (Figure 1.2).

special purpose databaseBhe most straightforward way of accessing endgame values it
to call the proper SearchBench function and wait for the value. But this makes the sea
algorithm slow since SearchBench may have to decompress parts of the database to re
single value. Additionally, the databases contain more information than necessary.

SearchBench does not only
compute the game-theoretic values

of endgame positions, but also OO
stores the number of moves to win

or loss, assuming both Black and [e

White play optimally. But to

compute the value of the game, it is O to Move

sufficient to know the game
theoretic values of endgame
positions. Also, not every position
in the endgame databases is
reachable from opening positions,
e.g. an endgame position with nine
black and seven white stones must
contain exactly two black mills to O .
be reachable (Figure 1.3).

Therefore, smaller special purpose
databases are used where only the
game-theoretic values are stored
and where non-reachable positions
are excluded. Storing five values
per byte results in databases which
are smaller and faster to access than
the original databases of
SearchBench.

Figure 1.3: A non-reachable position.
Black has captured two stones, but has
no mills on the board

use small number of databas@eoretically, positions in any endgame database can be
reached from the opening phase. Thus for every SearchBench database a special pur
database must be computed for the opening prover.

But, to prove that Nine Men's Morris is a draw, it turned out that the 9-9, 9-8 and 8-
databases were sufficient, because in 'reasonable’ games none or only a few stones
captured during the opening. In case a database is required which is not available, a lo
bound for the value of the position is propagated (seest case valuéedelow). This
technique makes the opening search fast, because less disk accesses are needec
reduces the quality of the values returned by the alpha-beta search. For example, it is
longer possible to play perfectly from all opening positions.

worst case valuesFhe root node of a search tree is either a Black or a White node. Whe
the search algorithm expands a node it must always check whether the new position is :
within the domain of available databases. If the value of the new position is not available
worst case value for this position is generated. This worst case value depends on the pl:
at the root node and on the player who expanded the new position. If the root player ¢
the expanding player are the same, then the worst case value is a loss, otherwise it is a
This is just an application of the rule where, for example, if it's Black's move at the roc
node, any losing move from any Black node in the tree is bad for Black.

2 Performance measurements

In the following chapters, the opening prover will be improved step by step. To give a
idea about the effectiveness of the new techniques, every chapter concludes with ta
showing some profiling information. This chapter explains the recorded data, how the
were computed and their values for the opening prover.

hardware: The measurements were Q Q O Q Q
performed on a Macintosh Quadra

84Mv using a 68040 processor
running at 33 MHz. The system has O
24MByte RAM and an internal d
harddisk of 500MByte. O tomove

the test positionPositions at the
eighth ply are the most difficult to
compute, because search must go
deeper to reach the databases. The
test position was, therefore, chosen
at the eighth ply (Figure 2.1).

Note that the values are valid only
for this position. The intention is

not to show the performance of the ‘ . . . ‘
algorithm in general, but to
demonstrate the strengths and
weaknesses of the techniques used.

Figure 2.1: the test position

the recorded data:
- Total search time: time required to compute the move
- Disk access time: time spent waiting for a disk access to complete
- Search tree size: number of nodes in the search tree that had to be expanded to
compute the value
- Database misses: number of accesses to databases which are not available

- Database hits: number of read accesses
to the endgame values i
- File accesses: number of load accesses Total search time 4] 2458
to the database files (
- Hashtable accesses: number of accesses to theDisk access time [20[12
hashtable Relative to total [%
- Hashtable hits: number of values found
in the hashtable Search tree size 2017453
: Database misses 379176
opening prover performancefhe table on the Database its 106902
right shows the profiling data for the old opening = 1069412
prover. For the test position, the total search time € 8CCESSES qr
was about 20 minutes, of which 81% was spent |
during disk accesses. The number of database hits Hashtable accessefs 34075
and file accesses is equal because values are readdashtable hits 249069

one by one from the database files.

3 Buffering

During an opening search from a position at the eighth ply, the number of positior
accessed in the endgame databases is in the order of magnitu8emfl@0 Profiling of

the search routine showed that about 80% of the time is spent accessing the disk to |
position values into memory. This in spite of the fact that a hashtable had been introduc
at the 16th ply (Figure 1.2) to provide values in case of move transpositions.

3.1 Locality

Even when the repeated access to the value of the same position is avoided, the numb:
disk accesses can be reduced significantly. Analysis of the access pattern showed, tha
loaded values tended to be close together in the database files. This makes it very effec
to load whole blocks of values. The locality in the access pattern is a result of the w
positions are numbered in the endgame databases.

In databases where the number of white stones is higher or equal to the number of bl
stones, all positions with the same configuration of white stones are stored in a continuc
block. The size of these blocks depends on the number of possible black configurations
is different for every database.

Why is the alpha-beta search algorithm likely to access several values in the same blo
This is because black has the last move in the opening. At the 17th ply, White has made
last move in the opening and the white configuration is fixed. All positions generated fc
the last black move belong to the same white configuration and are stored in the sa
block. Consequently, a major increase in performance can be achieved by loading wh
blocks of values at once and by keeping as many of them as possible in main memory.

3.2 Memory management

If the algorithm has to buffer loaded blocks, it must allocate and deallocate memory qui
frequently. Because the system calls for memory allocation and deallocation tend to
slow (on a Macintosh), all memory used for buffering is allocated at initialisation and the
managed by the program itself. This is a short description of the memory manageme
algorithms used.

data structure:(see Figure 3.1) LRU
The search algorithm must

store and access blocks of Hashtable l Blocks
different lengths as fast as I I

possible and wants to keep a | | header | block
block in memory as long as key

possible. To make access fasta [Toiner

hashtable is used, containing a - ? *

key and a pointer to the 2 header | block
corresponding block. polnter

A linear list of free blocks key ‘
(freelist) is maintained for pointer #
memory allocation, and a | | header | block
doubly linked list is provided to

keep track of the used blocks.

Every block is preceded by a Yy
header to store the pointers for

the lists. Figure 3.1: data structure

hashing:A hashtable with collision detection is used to search for loaded blocks. The tinr
required for the access through the hashtable is negligible compared to the overall see
time, so a simple linear probing algorithm is used.

first fit: To allocate memory, the freelist is searched linearly and the first block which is bi
enough is used. If no block is available in the free list, the least recently used block
deleted from the used list and appended to the free list, merging it with adjacent free bloc
if possible.

LRU: The doubly linked list was implemented to keep track of which block is the leas
recently used at any time. On every access to a value, the corresponding block is move
the end of the used list. Hence, the blocks are ordered according to the time of their |
access, and the first entry in the list points to the least recently used block.

3.3 Result

The following table shows the profiling data of the buffering algorithm as compared to th
old opening prover algorithm.

The number of file accesses was reduced by a factor of about 200, which resulted i
speedup of 4.41.

I buffering
Total search time [ﬂ 24 b8 9
Speedup 10 4.41
Disk access time [slk 2012 1180
Relative to total [% 8IL 8
Search tree size 2017853 2017853
Database misses 379176 37£J|776
Database hits 10690[/2 106972
File accesses 1069072 5}86
Hashtable accesse 34075 34&]775
Hashtable hits 249069 249069

4 Perfect values

To get perfect values for all positions in the opening, it would be necessary to make .
endgame databases available. But this would increase search time, because values mu
loaded instead of using just simply a lower bound, and is not reasonable because only a
databases are responsible for most accesses. Thus, another way of improving the qualit
the returned values is needed.

4.1 Value ranges
To reduce the effect of not knowing the exact value, the search algorithm was rewritten

produce both a lower and an upper bound to the exact value, thus providing a means
judging the quality of a value.

10

Instead of computing the worst case for not available values, we can generate a lower .
an upper bound to the exact value. Besides the usual perfect values of win, loss and d
we introduce three new value ranges, namely 'Unknown’ (‘loss to win'), 'maxDraw' (‘loss
draw’) and 'minDraw' (‘draw to win'). Now the value of any position outside the domain ¢
available databases is set to ‘Unknown’, and search continues.

range propagationFigure 3.2 shows a simplified algorithm for alpha-beta search. The
new algorithm differs only in the way values are propagated. Figures 3.3 and 3.4 show |
two propagation functions, implemented as an array PropTable in Figure 3.2.

AlphaBeta(Position, Alpha,Beta)
SuccessorList := GetSuccessors(Position)
FOR I := all successors DO BEGIN
NewValue:=AlphaBeta(SuccessorList[l], Inverse[Beta], Inverse[Alpha])
Alpha:=PropTable[NewValue, Alpha]
IF Alpha>=Beta THEN RETURN Alpha

END
RETURN Alpha
END
Figure 3.2
Alpha
Win Loss Draw
Win Win Win Win
NewValug Loss Win Loss Draw
Draw Win Draw Draw
Figure 3.3: standard propagation function
Alpha I
Win Loss Draw MinDraw | MaxDraw| Unknown
Win Win Win Win Win Win Win
Loss Win Loss Draw MinDraw | MaxDraw| Unknowr
NewValue | Draw Win Draw Draw MinDraw| Draw MinDraw
MinDraw || Win MinDraw | MinDraw | MinDraw | MinDraw | MinDraw
MaxDraw || Win MaxDraw [Draw MinDraw | MaxDraw| Unknown
Unknown || Win Unknown | MinDraw | MinDraw | Unknown| Unknowr)
Figure 3.4

The new propagation function requires special handling in the root node. One proble
arises when one successor is evaluated as 'Unknown' and an other as '‘Drawn’. Whic
better? Or, the first successor is evaluated as drawn, then search continues w
Alpha=draw and Beta=win. If the next value is a 'MinDraw’, this may be the result of a
‘Unknown' where the lower part of the range has been clipped.

In the former case, the algorithm chooses a conservative strategy, and plays the dre
move. In the latter case, the same move is searched a second time with a full search ran

11

Discussion worst case values versus value ranges:
advantages of worst case values:
- many worst case values are wins,
generating immediate cutoffs, thus

y
speeding up search. Figure 3.5 shows an
example where a worst case loss generates
a cutoff
disadvantages of worst case values:
- the value resulting from search is only a
lower bound for the exact value L O O worstease

- no information is available to tell whether

the value is exact or only a lower bound Figure 3.5: worst case values
advantages of perfect ranges:
- the best value is found, given a certain
domain of available databases
- if an exact value is returned, then it is a
proven value
disadvantages of ranges: U | searchmustgo on
- when propagating a value of 'Unknown’,
the alpha-beta search gains no new
information, thus no cutoffs are generated
(Figure 3.6) value range
- some special handling is necessary at the e e @
root node.

Figure 3.6: value ranges

4.2 Result

The effect of using value ranges instead of worst case values is, that the size of the search tre
increased 36 times, resulting in a disastrous slow down. When value ranges were implemen
the first time, they were immediately judged as 'nice but not practical' and discarded. Only aft
further investigations means were found to avoid the large search tree.

I buffering!value rang%s
Total search time [$| 24 b8 5p9 16568
Speedup 10 441 0.14
Disk access time [2012 180 3Dp9
Relative to total [% 8[L 23 1P

|
Search tree size 2017953 2017853 73006119
Relative to "old" [%] 10D 140 36118
Database misses 379176 37976 17214242
Database hits 106902 1069072 49874P01
File accesses 1069072 5786 12[f75
Hashtable accessef 340(75 340775 11696076
Hashtable hits 249069 249069 10507j11

12

5 More endgame databases

To prove that Nine Men's Morris is a draw, only three endgame databases were requir
When the alpha-beta search algorithm tried to access a database not available, a worst
value was returned and used for further value propagation. This made the search algorit
very fast, because less database values had to be read from the disk and because the
case values tended to create lots of cutoffs in the search tree.

After the new algorithm for propagation of value ranges had been implemented the strate
of using as few databases as possible had to be dropped. Instead of a worst case val
value range 'Unknown' is now returned for every access to a database not availat
blowing up the search tree.

Because it is important to create as few unknowns as possible, more databases need 1
provided for the search algorithm. In fact, the higher search speed resulting from mc
databases now must be balanced against the disk access delays resulting from n
different database values loaded and the increased memory requirements of th
databases.

The table shows the results after including three more databases (9-7, 9-6, 8-7). Note r
the number of database misses and the search tree size was reduced.

I value rangglg databasﬂes
Total search time [ﬂ 24 b8 165p8 1148
Speedup 10 0.14 2.]15
Disk access time | 2012 309 4‘86
Relative to total [% 8IL 1.p 6

|
Search tree size 2017853 73006119 421B225
Relative to "old" [%] 10D 36118 2009
Database misses 379776 17216p42 18808
Database hits 10690[/2 49876901 2744546
File accesses 1069072 12475 15
Hashtable accesses 34075 11699076 5700696
Hashtable hits 249069 10507311 385p02

13

6 Move ordering

The move ordering strategy of the opening prover was optimized to compute lower boun
If it was White's move at the top level, then in White's nodes the defensive successors w
evaluated first, in Black's nodes the offensive, i.e. the capturing moves, were evalualt
first. This makes the search algorithm fast, because every time a Black capturing mc
leaves the domain of available databases, a win for Black is returned (the worst case for
White player) which results in an immediate cutoff.

When using perfect value ranges in the search algorithm, every capturing move whi
leaves the domain of available databases generates an '‘Unknown'. This does not resu
cutoffs, but increases the size of the search tree enormously.

It proved to be best to avoid the evaluation of capturing moves as long as possible, thu
the new move ordering, both players use a defensive evaluation strategy, independen
the player at the top level.

The search time is now reduced to about five minutes. Note the small number of datab.
misses. In a position where stones already have been captured, there will still be me
misses.

I databased move orderjng
Total search time [ﬂ 24 b3 1148 8
Speedup 10 2.15 7.52
Disk access time [E 2012 186 JL)S
Relative to total [% il 16 3P
I
Search tree size 2017953 4218p25 1100258
Relative to 'old’ [%)] 10D 209 45
|
Database misses 379776 186[808 [| 18
Database hits 10690[/2 2749%46 560411
File accesses 1069072 8115 4D68
|
Hashtable accesse 34075 529696 287248
Hashtable hits 249069 385202 235064

14

7 Minor improvements

7.1 Code optimization

Modern compilers provide options for code optimization. Alas, the compiler used for thi
thesis neither offered any means for automatic code optimization, nor did it make any
the simplest and most straightforward optimizations, as for example replace a 'DIV

operation by a 'shift right'.

After profiling the search algorithm, some procedures were optimized manually for bett
performance. This included the following steps:
- loop unrolling of loops with a constant number of steps

- storing values computed at high cost for later reuse

- storing values of simple functions in tables, thereby replacing a function call

by a table access

- instruction strength reduction, especially replacements of 'BI¥%y2 shift

right n'
7.2 Hashtable

The old opening prover used a hashtable to store computed values at the 16th ply to a\
repeated access to the value of the same position (Figure 1.2).
A few measurements showed that better results can be achieved when hashing value:

every ply level from 11 to 17.

7.3 Result

| _old |move ordering optimizatiofs hashtaljle
Total search time [4]] 2468 3P8 281 32
Speedup 10 7.2 8./8 10]p4
Disk access time [q] 2012 1p5 105 105
Relative to total [% il 3p 37 45
Search tree size 2017453 1100P58 1100258 64p737
Relative to 'old’ [%]] 10D 5b 35 32
Database misses 379176 18 18 18
Database hits 10690}/ 2 560411 560411 36]1041
File accesses 1069072 4968 4P68 4968
Hashtable accesses 340y 75 281248 28[7248 2445514
Hashtable hits 249069 235064 235p64 98523

15

8 Results

Figure 8.1 shows the new organisation of the opening search program, see Figure 1.2
the organisation of the old search program. The most important changes are, that per
values can now be computed in the whole search tree and that more databases are avai

alphabeta search
use exact ranges

opening phase 4 N_ _ _ _ _ _ _ _ _ _
(18 plies)

alphabeta search
use exact ranges

alphabeta search

use exact ranges
use hashtable

(11th to 17th ply)

egame 19-9]9-8]|9-7]9-68-8]8-7]| Gaesame,

Figure 8.1: the new organisation of the opening search program (see Figure 1.2)

After the implementation of value ranges and after including additional databases, t
intermediate database can be recomputed and filled up with more exact values ranges.
two original databases, which contained lower bounds for Black and lower bounds f
White respectively, were merged together to use the old values where possible. Because
computation of all values in the database would take too long, a mechanism w
implemented to allow incremental computation.

16

The required time for a search depends mostly on the ply number at which it is starte
Figure 8.2 shows a qualitative plot of search time against ply number. The hardest mo\
are those from the eighth ply, because moves from the first to the seventh ply can use
intermediate database, and an eighth ply search must go down to the endgame databast

time A

|
4

8

12

|
16

18

Figure 8.2: qualitative plot of search time versus ply number

The following table repeats the results of the measurements.

ply number

I buffering| value rangep databages move ord¢ring _fifal

Total search time [ﬂ 24 b8 5p9 16568 1148 328 232
Speedup 10 441 0.14 2]15 7152 1(.64
Disk access time | 2012 130 309 186 105 105
Relative to total [% 8L 23 19 16 32 5
Search tree size 2017853 2017B53 73006119 4218225 11000258 $4673
Relative to 'old’ [%)] 10D 140 3618 2PD9 h5 32

I
Database misses 37976 379776 17216242 186808 18 18
Database hits 1069072 1069072 49876901 2749546 560411 36104
File accesses 1069072 5786 12y75 8115 4968 [4968

|
Hashtable accessef 340y75 340775 11696076 5P9696 487248 [P855]
Hashtable hits 249069 249069 10507811 38%202 235064 $8523

17

Traps & Swindle

This section examines methods to improve perfect playing programs. A model to
measure the difficulty of a position is introduced in chapter 10, and
implementations of it are described and compared in chapters 11 and 12.

18

9 Overview

Much effort has gone into solving games. After a game is solved, it is possible to play tl
game perfectly. This means that the computer player is always able to attain the gar
theoretic value of the actual position. In a stronger sense this can mean that the comp!
player can move so that he can win with a minimum number of moves, or, in lost positior
lose with a maximum number of moves. There is still some potential for improvemer
assuming that the opponent is a human player or a heuristic program. Because of tt
limited knowledge of the values of the positions, they may blunder now and then. How th
can be exploited by a perfect player depends on the value of the position he has to m
from.

If the perfect player already has achieved a won position, a blunder by his opponent w
result in a win within a lower number of moves. This can be decisive in games where limi
in the number of moves are given, as for example the 50 moves rule in chess.

If the perfect player is in a drawn position, a blunder of his opponent would increase ti
game-theoretic value to a win. Note that there may not be any distance informatic
associated with drawn positions, because opponents agree on a draw only after repetitio
positions already taken up.

If the perfect player is in a lost position, there are two kinds of blunders his opponent m
make, he may increase the game theoretic value to a draw or even to a win for the per
player.

9.1 Definition traps and swindles

How can the perfect player increase the probability that his opponent blunders? A numt
of general strategies have been proposed to exploit additional knowledge from databa:
or additional knowledge resulting from a deeper search horizon [3][5].

For example, two strategies are proposed for a player who can search deeper than
opponent [5], said strategies are called 'traps’ and 'swindles'.

A trap is a position where the opponent has a move that looks good at shallow depth, bu
revealed as bad at greater depth. Whether a position is a trap or not is strongly related to
difficulty of a position (as seen from the viewpoint of the heuristic player). The perfec
player has to identify such positions and must try to steer the game in their direction.

A swindle is a move that looks good for the perfect player at shallow depths, but turns c
bad at greater depth (against the opponent's perfect play). By definition, a swindle i<
move of the perfect player which does not attain the game-theoretic value, i.e. it is no
perfect move.

9.2 Implications of a proven draw in Nine Men's Morris

In Nine Men's Morris, the perfect player will never lose a game, unless he swindles.